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Abstract. We study the helicity amplitudes and the observables of the process γγ → γZ at high energy. As
in the case of the γγ → γγ process studied before, the relevant diagrams in the standard model (SM) involve
W , charged-quark, and lepton loops, while in SUSY we also have contributions from charginos and charged-
sfermion or Higgs-loop diagrams. Above 250 GeV, the dominant SM amplitudes are themselves dominated
by the W loop, and as for γγ → γγ, they are helicity conserving and almost purely imaginary. We discuss
the complementary information provided by γγ → γZ for the identification of possible nonstandard effects.
This process, together with γγ → γγ, should provide very useful information on the nature of possible new
physics particles, above the threshold of their direct production.

1 Introduction

In previous papers [1,2], we have studied the process γγ →
γγ. The most striking property of this process in the stan-
dard model (SM) is that its whole set of possible helic-
ity amplitudes is strongly dominated by just the three
helicity-conserving ones, which, moreover, are almost
purely imaginary. This simple property offers new pos-
sibilities for improving the search for new physics (NP) at
high energy. Some of these possibilities related to γγ → γγ
have been investigated in the aforementioned papers. We
now extend this study to the process γγ → γZ.

The remarkable property of the γγ → γγ processes
mentioned above is due to the fact that the SM amplitude
first appears at the one-loop level, and at high energies, it
is dominated by the W -loop contribution, which mainly
enhances the imaginary parts of the three-helicity nonflip
amplitudes. Thus, in SM, this process is dominated by
just a few almost purely imaginary helicity- conserving
amplitudes. As we will see in the present work, similar
properties are also valid for the process γγ → γZ studied
here.

This suggests the use of γγ → γγ, γZ processes as a
tool for searching for types of new physics characterized
by amplitudes with a substantial imaginary part that can
interfere with the SM one, e.g., effects due to chargino
or charged-slepton-loop diagrams above the threshold, s-
channel resonance production, or new strong interactions
inducing unitarity saturating contributions to the NP am-
plitudes.
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These studies could be achieved at a future e+e− linear
collider (LC) [3], operating as a γγ collider (LCγγ) whose
c.m. energy may be variable and as high as 80% of the
initial e+e− c.m. energy, by the use of the laser backscat-
tering technique [4,5]. Polarized γγ beams can also be
obtained through the use of initially polarized electron
beams and lasers.

This search for NP through its virtual effects is com-
plementary to the direct production of new particles and
should help in the identification of their nature, since it
avoids the model-dependent task of studying their decay
modes, once they are actually produced. More explicitly,
the charged-sparticle-loop contribution to γγ → γγ, γZ is
independent of the many parameters entering their decay
modes and determining, e.g., the soft SUSY breaking and
the possible R parity-violating sectors.

In the present paper, we study in detail the γγ → γZ
amplitudes in the standard and SUSY models. The idea
is to confirm and improve the searches for NP signatures
that can be done through direct production and the mea-
surements of the γγ → γγ process. The situation for such
measurements should be more favorable in γγ → γZ than
in γγ → γγ, because the cross section is larger by a factor
of about 6. Then, if a signal suspected in γγ → γγ is also
seen here, the detailed properties of the SM departures,
which now depend on the occurrence of the Z couplings,
should allow some identification of the nature of the effect.
In particular, it should help identifying the SU(2) × U(1)
quantum numbers of the new physics particle contributing
virtually.

In Sect. 2, we discuss the main properties of the W ,
fermion, and scalar-loop contributions at high energies,
which had not been fully analyzed before. This allows us
to predict the type of effects expected in case of NP con-
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tributions caused by new fermion or scalar particle loops.
We consider SUSY as an example of such an NP, and we
discuss the physical properties of the contribution to the
above amplitudes from a chargino or a charged slepton,
showing how the presence of the Z coupling can distin-
guish them. For example, the magnitude of the contribu-
tion changes notably when passing from a gaugino-like to
a higgsino-like contribution. And for an slepton loop, even
changes of sign appear, when it passes from an L slepton
to an R slepton case.

In Sect. 3, we study the γγ → γZ cross sections in the
standard and SUSY models for various polarizations of
the incoming photons. We identify the sensitivity of these
cross sections to various SUSY effects, and we discuss their
observability in unpolarized and polarized γγ collisions,
realized through the present ideas of laser backscattering.
Finally, in Sect. 4, we summarize the results and give our
conclusions.

The explicit expressions for the W - [6,7] and fermion-
loop [8,6] contributions to the helicity amplitudes are
given in Appendix A, using the nonlinear gauge of [9]. We
agree with the previous authors, apart from some slight
corrections affecting the W contributions to some small
helicity amplitudes. In addition, we also give the one-loop
contribution induced by a single charged scalar particle.
In Appendix B, simple asymptotic expressions for the he-
licity amplitudes are given which elucidate their physical
properties at high energies.

2 An overall view
of the γγ → γZ amplitudes

The invariant helicity amplitudes Fλ1λ2λ3λ4(ŝ, t̂, û) for the
process γγ → γZ, where λj are the helicities of the incom-
ing and outgoing particles, are given in Appendix A. Al-
together, there are 3 × 23 = 24 helicity amplitudes, which
must of course satisfy the constraints from Bose (A.2). In
SM or SUSY models, charge conjugation enforces parity
invariance at the one-loop level, which implies (A.3) and
allows us to express all helicity amplitudes in terms of
nine analytic functions, six for transverse Z and three for
longitudinal Z:

F++++(ŝ, t̂, û) , F+++−(ŝ, t̂, û), F++−+(ŝ, t̂, û) ,

F++−−(ŝ, t̂, û) , F+−+−(ŝ, t̂, û) = F+−−+(ŝ, û, t̂),

F+−−−(ŝ, t̂, û) = F+−++(ŝ, û, t̂) , F+++0(ŝ, t̂, û) ,

F++−0(ŝ, t̂, û)F+−+0(ŝ, t̂, û) = F+−−0(ŝ, û, t̂) .

In Appendix A, we reproduce the1 W and charged-fermion
contributions of [7,6,8], and we also give the contribu-
tions to these amplitudes that are due to a scalar particle
loop. The essential difference between these amplitudes
and those of the γγ → γγ case presented in [1] (apart
from the obvious mZ-dependent kinematic terms) is the

1 Certain corrections are found for the W contributions to
some small helicity amplitudes, when we compare our results
to [7]

appearance of longitudinal Z states and the replacement
of the factor Q4

x by Q3
xgZ

V x for an x-particle-loop contri-
bution.

All results are given in terms of the standard one-loop
functions B0, C0, and D0, first introduced in [10]. Explicit
asymptotic expressions for these functions, relevant for the
γγ → γZ kinematics, are given in Appendix B. The dom-
inant W contributions to the corresponding asymptotic
helicity amplitudes are also given there; the correspond-
ing expressions for the fermion and scalar contributions
can be easily written using the presented formulae.

In the standard model and for ŝ & (250GeV)2, the
only nonnegligible amplitudes in both the γγ → γZ and
γγ → γγ process are F±±±±(ŝ, t̂, û) and F±∓±∓(ŝ, t̂, û) =
F±∓∓±(ŝ, û, t̂), which turn out to be completely domi-
nated by the W -loop contribution and almost purely imag-
inary. They satisfy

ImFW
γγ→γZ ' cW

sW
ImFW

γγ→γγ . (1)

The fermion-loop contribution to these same amplitudes is
much smaller; its real and imaginary parts are comparable,
and roughly satisfy

F f
γγ→γZ ' gZ

V f

Qf
F f

γγ→γγ , (2)

where for a standard quark or lepton f ,

gZ
V f =

tf3 − 2Qfs2
W

2cW sW
. (3)

The rest of the amplitudes turn out to be much smaller
than the above dominant ones. For them, the real and
imaginary parts are roughly on the same footing, as well
the W - and fermion-loop contributions.

Numerical results for these amplitudes using the exact
one-loop functions are presented in Fig. 1a,b, and they
agree with the above expectations. Indeed, the real part of
the large amplitudes F±±±±(ŝ, t̂, û) and F±∓±∓(ŝ, t̂, û) =
F±∓∓±(ŝ, û, t̂) is always more than 4(15) times smaller
than the imaginary part at

√
ŝ ' 0.3(0.6) TeV.

As in the γγ → γγ case [1], the asymptotic expressions
in Appendix B are quite accurate in describing the large
SM helicity amplitudes F±±±±(ŝ, t̂, û) and F±∓±∓(ŝ, t̂, û)
= F±∓∓±(ŝ, û, t̂), for the process γγ → γZ also. This is
due to the fact that the double-log real contributions from
(B.8, B.7) always cancel out for physical amplitudes, and
the only important contributions remaining are the single-
log imaginary ones. For the rest of the helicity amplitudes,
all log contributions either cancel out or are strongly sup-
pressed by m2

W /ŝ factors.
This confirms the fact that γγ → γZ, much like γγ →

γγ scattering, may provide a very useful tool for searching
for types of NP, with largely imaginary amplitudes [2].

We have thus computed the contributions of SUSY
particles, i.e., the contributions from a chargino or an
sfermion loop.

The contribution from the lightest positively charged
chargino χ+

1 is obtained from the effective interaction
(A.22) by using [11]



G.J. Gounaris et al.: The γγ → γZ process at high energies and the search for virtual SUSY effects 501

Fig. 1a,b. SM contribution to the dominant γγ → γZ helicity amplitudes at ϑ∗ = 300 and ϑ∗ = 900. All other amplitudes are
predicted to be smaller or about equal to F+−+0 or F+−−0

gZ
V χ =

1
2cW sW

{
3
2

− 2s2
W +

1
4
[cos(2φL) + cos(2φR)]

}
,

(4)
with

cos(2φL)

= − M2
2 − µ2 − 2m2

W cos(2β)√
(M2

2 + µ2 + 2m2
W )2 − 4[M2µ − m2

W sin(2β)]2
,

cos(2φR)

= − M2
2 − µ2 + 2m2

W cos(2β)√
(M2

2 + µ2 + 2m2
W )2 − 4[M2µ − m2

W sin(2β)]2
,(5)

and

M2
χ+

1
=

1
2

{
M2

2 + µ2 + 2m2
W (6)

−
√

(M2
2 + µ2 + 2m2

W )2 − 4 [M2µ − m2
W sin(2β)]2

}
.

Using the formulas (A.27–A.35) in Appendix A, to-
gether with the exact one-loop calculation from [12] and
(4, 6), we present in Fig. 2 the results for two almost
extreme situations corresponding to a light chargino of
mass Mχ+

1
' 95 GeV and tanβ = 2. In the first case, the

chargino nature is taken as gaugino-like by choosing (see
Fig. 2a,b)

M2 = 0.081 TeV , µ = −0.215 TeV , gZ
V χ = 1.72 ;

(7)
while in the second case, it is taken to be higgsino-like by
choosing (see Fig. 2c,d)

M2 = 0.215 TeV , µ = −0.081 TeV , gZ
V χ = 0.73 .

(8)

We also consider the L- and R-slepton cases, with Ml̃ =
0.1 TeV, Ql̃ = −1, and

gZ
V l̃

=
1

cW sW

[
tl̃3 − Ql̃s

2
W

]
. (9)

For tl̃3 = − 1
2 , these lead to gZ

V l̃
= −0.65 (case L), while

for tl̃3 = 0 we find gZ
V l̃

= +0.54 (case R). As a result,
a change of sign appears between L- and R-slepton con-
tributions. The corresponding results for an slepton are
derived through the use of (A.40– A.48) and presented in
Fig. 3a–d.

As seen for both the cases of Fig. 2a–d and those of
Fig. 3a–d, the real and imaginary parts of the fermion-
or scalar-loop contributions to the γγ → γZ amplitudes
above threshold are more or less on the same footing. It is
also seen that immediately above the threshold, an imagi-
nary contribution to the F±±±±(ŝ, t̂, û) and F±∓±∓(ŝ, t̂, û)
= F±∓∓±(ŝ, û, t̂) amplitude starts developing that can in-
terfere with the SM contribution and produce a measur-
able effect. The slepton contribution is smaller than the
chargino one, by a factor of about 7.

As compared to the γγ → γγ case, we also notice the
presence of large longitudinal Z amplitudes, for both the
chargino and the slepton cases. However, these are not
easily observable, since they do not find a corresponding
large longitudinal SM amplitude to interfere with. So in
the end, they will produce very small effect.

For transverse amplitudes, as a consequence of the
gZ

V f/Qf factor, the effect in the γγ → γZ case is larger
(weaker) than the γγ → γγ effect in the gaugino (hig-
gsino) cases. The corresponding effect in the slepton cases
is a change in sign of their contribution to γγ → γZ, when
passing from the L-slepton to the R-slepton case. These
properties will be directly reflected in the threshold effects
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Fig. 2a–d. Chargino contribution to γγ → γZ helicity amplitudes for the gaugino (a,b) and higgsino (c,d) cases at ϑ∗ = 300

and ϑ∗ = 900. The parameters used are indicated in the figures, and Q
χ+
1

= 1

appearing in the cross sections that we study in the next
section.

3 The γγ → γZ cross sections

We next explore the possibility of using polarized or un-
polarized γγ collisions in an LC operated in the γγ mode,
through laser backscattering and the procedure described
in [13,2]. The assumption of parity invariance leads to the
following form for the γγ → γZ cross section (note the fac-
tor 2 due to the presence of a nonsymmetric final state;
compare with the γγ → γγ case):

dσ

dτd cos ϑ∗

=
dL̄γγ

dτ

{
dσ̄0

d cos ϑ∗ + 〈ξ2ξ
′
2〉

dσ̄22

d cos ϑ∗

+〈ξ3〉 cos 2φ
dσ̄3

d cos ϑ∗ + 〈ξ′
3〉 cos 2φ′ dσ̄′

3

d cos ϑ∗

+〈ξ3ξ
′
3〉

[
dσ̄33

d cos ϑ∗ cos 2(φ + φ′) +
dσ̄′

33

d cos ϑ∗ cos 2(φ − φ′)
]

+〈ξ2ξ
′
3〉 sin 2φ′ dσ̄23

d cos ϑ∗ − 〈ξ3ξ
′
2〉 sin 2φ

dσ̄′
23

d cos ϑ∗

}
, (10)

where

dσ̄0

d cos ϑ∗ =
(

βZ

64πŝ

) ∑
λ3λ4

[|F++λ3λ4 |2 + |F+−λ3λ4 |2] , (11)
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Fig. 3a–d. Contribution to γγ → γZ helicity amplitudes from an isodoublet (a,b) and an isosinglet (c,d) slepton at ϑ∗ = 300

and ϑ∗ = 900. The parameters used are indicated in the figures, and the slepton mass is taken as Ml̃ = Ms = 100 GeV

dσ̄22

d cos ϑ∗ =
(

βZ

64πŝ

) ∑
λ3λ4

[|F++λ3λ4 |2 − |F+−λ3λ4 |2] , (12)

dσ̄3

d cos ϑ∗ =
(−βZ

32πŝ

) ∑
λ3λ4

Re[F++λ3λ4F
∗
−+λ3λ4

] , (13)

dσ̄′
3

d cos ϑ∗ =
(−βZ

32πŝ

) ∑
λ3λ4

Re[F++λ3λ4F
∗
+−λ3λ4

] , (14)

dσ̄33

d cos ϑ∗ =
(

βZ

64πŝ

) ∑
λ3λ4

Re[F+−λ3λ4F
∗
−+λ3λ4

] , (15)

dσ̄′
33

d cos ϑ∗ =
(

βZ

64πŝ

) ∑
λ3λ4

Re[F++λ3λ4F
∗
−−λ3λ4

] , (16)

dσ̄23

d cos ϑ∗ =
(

βZ

32πŝ

) ∑
λ3λ4

Im[F++λ3λ4F
∗
+−λ3λ4

] , (17)

dσ̄′
23

d cos ϑ∗ =
(

βZ

32πŝ

) ∑
λ3λ4

Im[F++λ3λ4F
∗
−+λ3λ4

] , (18)

are expressed in terms of the γγ → γZ amplitudes given in
Appendix A. In (11–18), βZ = 1 − m2

Z/ŝ is the Z velocity
in the γγ rest frame, while ϑ∗ is the scattering angle, and
τ ≡ sγγ/see. Note that dσ̄0/d cos ϑ∗ is the unpolarized
cross section and that it is the only σ̄j quantity which
is positive definite. We also note that dσ̄j/d cos ϑ∗ are
forward–backward symmetric, except those below, which
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Fig. 4a–d. σ̄0, σ̄22, σ̄23 = σ̄′
23, and σ̄3 = σ̄′

3 for SM (solid) and in the presence of a chargino (dashes, dashes–circles) or a
charged-slepton (box, rhombus) contribution, with the same parameters as in Fig. 2 and Fig. 3, respectively

satisfy

dσ̄′
3

d cos ϑ∗

∣∣∣∣∣
ϑ∗

=
dσ̄3

d cos ϑ∗

∣∣∣∣∣
π−ϑ∗

, (19)

dσ̄′
23

d cos ϑ∗

∣∣∣∣∣
ϑ∗

=
dσ̄23

d cos ϑ∗

∣∣∣∣∣
π−ϑ∗

. (20)

The results for the cross sections σ̄j , integrated in the
range 300 ≤ ϑ∗ ≤ 1500, are given in Fig. 4a–f, for the
standard model as well as for the cases of including the
contributions from a single chargino or a single charged
slepton with mass of about 95 or 100 GeV respectively.

As seen in Fig. 4a, the effects in the unpolarized cross
section σ̄0 are consistent with those expected from the
dominant imaginary amplitudes quoted in the previous

section. In more detail, the (gaugino, higgsino) effects are
of the order of (10, 5)%, respectively, while the slepton
ones are an order of magnitude smaller.

The relative (NP versus SM) effects are somewhat re-
duced in σ̄22, but they are largely enhanced in the other
σ̄j cross sections; (compare Fig. 4b with Fig. 4c–f.). How-
ever, most of the latter cross sections have small absolute
values, making them unlikely to be observed. Only σ̄3 and
σ̄33 are of the order of a few fb. The SUSY effects are
here notably enhanced as compared to the SM contribu-
tions, reaching the 25% level in some cases. Particularly
striking is the SUSY effect for σ̄33 and σ̄′

33 near but above
threshold. For σ̄′

33, such a behavior also occurred in the
γγ → γγ case [1], and it may be useful for disentangling
of the various SUSY examples.
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Fig. 4e,f. σ̄33 and σ̄′
33 for SM (solid) and in the presence of a chargino (dashes, dashes–circles) or a charged-slepton (box,

rhombus) contribution, with the same parameters as in Fig. 2 and Fig. 3, respectively

In the present case, the option to select longitudinal
polarization for the outgoing Z is also available. In this
case, remarkable SUSY effects, strongly dependent on the
type of particle running along the loop, are generated.
However, the absolute values of the related cross sections
are unfortunately less than 1 fb, rendering these effects
unobservable. See Fig. 5a–c where σ̄0(ZL), σ̄22(ZL) and
σ̄33(ZL) are presented; the other ones are less than 0.1 fb.

The angular distributions of the various dσ̄j/d cos ϑ∗
are illustrated for

√
s = 0.4 TeV in Fig. 6a–f. Restrict-

ing the discussion to those cross sections whose absolute
values are larger than 1 fb; one observes that forward–
backward peaks arise only for dσ̄0/d cos ϑ∗. Among the
rest, the most interesting ones are dσ̄22/d cos ϑ∗, dσ̄3/
d cos ϑ∗ (note (19)), and dσ̄33/d cos ϑ∗; which in fact have
a forward deep. At a weaker level, a similar result is true
for γγ → γγ, where of course all cross sections are forward–
backward symmetric (but no figures are shown in [1]). Fig-
ure 6a–f also show that SUSY effects often appear mostly
pronounced at large angles.

To get a feeling of the observability of the various quan-
tities σ̄j appearing in (10), we next turn to the experi-
mental aspects of the γγ collision realized through laser
backscattering [3,4]. The quantity dL̄γγ/dτ in (10) de-
scribes the photon–photon luminosity-per-unit e−e+ flux,
in an LC operated in the γγ mode [4]. The Stokes pa-
rameters ξ2, ξ3 and the polarization angle φ in (10) de-
termine the normalized helicity density matrix of one of
the backscattered photons ρBN

λλ̃
through the formalism

described in Appendix B of [1]; compare the equation
(B4) of [1] and [13]. The corresponding parameters for
the other backscattered photon are denoted by a prime.
The numerical expectations for dL̄γγ/dτ , 〈ξj〉, 〈ξ′

j〉, and
〈ξiξ

′
j〉 are given in Appendix B and Fig. 4 of [1]. To esti-

mate the expected number of events, one should multiply
the cross sections in (10) by the e+e− luminosity Lee,

whose presently contemplated value for the LC project is
Lee ' 500 − 1000 fb−1 per one or two years of running
in, e.g., the high-luminosity TESLA mode at energies of
350–800 GeV [3].

We next turn to the expected statistical accuracies for
the various σ̄j . The relative uncertainty for the unpolar-
ized cross section [σ̄0(〈cos ϑ∗〉)], calculated by integrat-
ing the respective differential cross section over a certain
reduced-energy bin ∆τ and an angular bin ∆ cos ϑ∗, is:

δ [σ̄0(〈cos ϑ∗〉]
[σ̄0(〈cos ϑ∗〉]

=
[
Lee(∆τ) (∆ cos ϑ∗)

(
dL̄γγ

dτ

) (
dσ̄0

d cos ϑ∗

)]− 1
2

. (21)

For the other cross sections, for whose measurement we
need various combinations of longitudinal e±, and longi-
tudinal and transverse laser polarizations, we perform an
analysis similar to the one in Sect. 3 of [1]. For simplicity,
we define

Rj (〈cos ϑ∗〉) ≡ [σ̄ij (〈cos ϑ∗〉)]
[σ̄0 (〈cos ϑ∗〉)]SM

. (22)

Then, the absolute uncertainties δ[σ̄ij(〈cos ϑ∗〉)] satisfy

δRj(〈cos ϑ∗〉) =
δ[σ̄ij(〈cos ϑ∗〉)]
[σ̄0(〈cos ϑ∗〉)]SM

=
1
cj

[
Lee (∆τ) (∆ cos ϑ∗)

(
dL̄γγ

dτ

) (
dσ̄0

d cos ϑ∗

)]− 1
2

, (23)

where cj =
√

2〈ξ2ξ
′
2〉,

√
2〈ξ3〉, 〈ξ3ξ

′
3〉, and

√
2〈ξ2ξ

′
3〉, for

R22, R3, (R33 or R′
33), (R23, and R′

23), respectively.
To estimate these, we take the numerical values for

the photon spectra and polarization degrees given in Ap-
pendix B and Fig. 4 of [1]. For the e+e− luminosity, we as-
sume 1000 fb−1. Then, using bins of the order of ∆τ ' 0.4,
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Fig. 5a–c. Cross sections σ̄0(ZL), σ̄22(ZL), and σ̄33(ZL) for
ZL production in SM (solid) and in the presence of a chargino
or a charged-slepton contribution denoted as in Fig. 4

∆ cos ϑ∗ ' 1, and dL̄γγ/dτ & 1, as well as an unpolarized
differential cross section of the order of 30 fb (see Fig. 6a),
one obtains a relative uncertainty of the order of 1%, for
the unpolarized cross section in (21).

For the ratios Rj defined in (22), the factor 1/cj will
increase the absolute uncertainty in (23). According to
Figs. 4 and 5 of [1], this factor depends strongly on the
backscattering configurations and on the reduced-energy
range, which can easily vary between 1 and 10. But if
the kinematic range to be studied is known, then the
backscattering configuration can be tuned to optimize the
flux spectrum. Thus, for the time being, we can roughly
conclude that the accuracy at which the ratios Rj can be
measured should lie between 1 and 10%. This means that
it is reasonable to expect an absolute uncertainty of the
order of 0.3 fb for dσ̄0/d cos ϑ∗ at large angles, and some-
thing in the range (0.3–3) fb for the other dσ̄ij/d cos ϑ∗.

These values have to be compared with the NP effects
expected on the corresponding observables. Thus, from

Figs. 4 and 6, one sees that the unpolarized integrated
cross section should be very sensitive to chargino effects,
this sensitivity characterized by a statistical significance
notably increased as compared with the γγ → γγ case
(up to 10 SD instead of 3 SD, if the chargino is in the 100
GeV mass range). For slepton searches, the situation in
γγ → γZ is similar to the one in γγ → γγ, because of the
small Z–slepton couplings.

The illustrations given in the present paper are for a
chargino or slepton in the 100 GeV mass range. For higher
masses, the relative merits of the γγ → γZ and γγ → γγ
processes2 remain about the same. We expect, therefore,
that γγ → γZ should be very helpful for sparticle searches
with a mass up to 300 GeV. As a final remark, we recall
that in γγ → γγ, if several SUSY particles exist within
a given mass range, then their effects are all positive and
cumulate in σ̄0. This is not necessarily the case in γγ →

2 In [1] we gave an illustration of sparticles at 250 GeV in
the γγ → γγ case
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Fig. 6a–d. Angular distributions for dσ̄0/d cos ϑ∗, dσ̄22/d cos ϑ∗, dσ̄23/d cos ϑ∗, and dσ̄′
3/d cos ϑ∗

γZ, because the gZ
V x can have different signs, as we have

seen in Sect. 2.

4 Conclusions

In this paper, we have extended our previous analysis
of the helicity amplitudes and observables in the process
γγ → γγ at high energies to the γγ → γZ case.

It appears that both processes share the spectacu-
lar property that in the SM and at energies above 0.25
TeV, only three independent helicity-conserving ampli-
tudes are important, which, moreover, are almost purely
imaginary. This is exactly what would have been predicted
about 30 years ago, on the basis of vector meson domi-
nance and Pomeron exchange. These three amplitudes are
F±±±±(ŝ, t̂, û) and F±∓±∓(ŝ, t̂, û) = F±∓∓±(ŝ, û, t̂). Thus

the γγ → γγ and γγ → γZ processes should be excellent
tools for searching for virtual new physics contributions
characterized by important imaginary contributions. This
means that they should very helpful in the identification
of the nature of nearby new particles, which can also be
directly excited. But they should not be of much use for
studying high-scale NP effects described by effective La-
grangians, which naturally lead to real amplitudes.

This has been illustrated for the particular SUSY cases
of a single chargino or charged-slepton contribution. Clear
threshold effects in the various observables appear, be-
cause of the interference of the imaginary parts of the
SUSY amplitudes with the SM ones. These contributions
depend, of course, on the mass and quantum numbers
of the SUSY partners, but are independent of the many
model-dependent parameters entering their decay modes,
contrary to the case of direct SUSY particle production.
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Fig. 6e,f. Angular distributions for dσ̄33/d cos ϑ∗ and dσ̄′
33/d cos ϑ∗

Thus, the study of the γγ → γγ, γZ cross sections should
offer complementary information to that obtained from
direct SUSY production cross sections. We have indeed
found that the unpolarized γγ → γγ, γZ cross sections σ̄0
are most sensitive to a chargino-loop contribution. For a
light chargino, the signal is, at most, 3 to 4 SD in γγ → γγ,
while it can reach 10 SD in the γγ → γZ case. For a sin-
gle charged slepton with a 100 GeV mass, we have found
that the corresponding effect on σ̄0 is an order of mag-
nitude smaller. Angular distributions are most sensitive
at large angles (| cos θ∗| < 0.5) in both cases. Polariza-
tion should allow one to test the nature of the particles
involved in the loop. There are eight different observables
in γγ → γZ, and six in γγ → γγ. Only five of them (σ̄0,
σ̄22, σ̄3, σ̄33, and σ̄′

33), will be able to be measured with
sufficient accuracy to allow checks of the global picture.
This requires an optimization of the laser backscattering
procedure, however.

The comparison of the situations in γγ → γγ and
γγ → γZ is very instructive. It is first important to no-
tice that in γγ → γγ, both the charged-fermion and the
charged-scalar particle loops increase the SM prediction
for σ̄0. If, as seems quite plausible, a chargino, as well as all
six charged sleptons and t̃1, lie in the 100–250 GeV mass
range, then a clear signal will be seen in σ̄0(γγ → γγ).
The study of γγ → γZ, including also polarization ef-
fects, should then give information on the origin of the
signal.

A similar type of effects could also appear for other vir-
tual NP contributions of fermionic or scalar nature, e.g.,
heavy fermions, technifermions, charged Higgses, pseudo-
goldstone bosons, or even heavy charged-vector bosons.
In the γγ → γγ case, the effect is controlled only by the
electric charge, while in γγ → γZ, the gZ

V x coupling also
enters in. There exist other process of this type, namely
γγ → ZZ and γγ → HH, HZ, which receive SM contri-
butions only at one-loop, and could be equally interesting

for NP searches. However, they are essentially controlled
by the properties of the Higgs sector, and deserve separate
studies, which are in progress.

In any case, it appears to us that γγ → γγ, γZ are very
clean processes which should supply excellent tools for NP
searches, and should add to the interest in providing for
the eventual realization of the γγ mode in the high-energy
LC colliders.

Appendix A: the γγ → γZ amplitudes
in SM and SUSY

The invariant helicity amplitudes for the process

γ(p1, λ1)γ(p2, λ2) → γ(p3, λ3)Z(p4, λ4) (A.1)

are denoted as3 Fλ1λ2λ3λ4(ŝ, t̂, û), where the momenta and
helicities of the incoming and outgoing photons are indi-
cated in parentheses, and ŝ = (p1 + p2)2, t̂ = (p1 − p3)2,
û = (p1 − p4)2. Bose statistics demands

Fλ1λ2λ3λ4(ŝ, t̂, û) = Fλ2λ1λ3λ4(ŝ, û, t̂)(−1)1−λ4 , (A.2)

while if parity invariance also holds, we get the additional
constraint

Fλ1λ2λ3λ4(ŝ, t̂, û) = F−λ1−λ2−λ3−λ4(ŝ, t̂, û)(−1)1−λ4.(A.3)

As a result, the 24 helicity amplitudes may be ex-
pressed in terms of just the 9 amplitudes

F++++(ŝ, t̂, û) , F+++−(ŝ, t̂, û), F++−+(ŝ, t̂, û) ,

F++−−(ŝ, t̂, û) , F+−+−(ŝ, t̂, û) = F+−−+(ŝ, û, t̂),

F+−−−(ŝ, t̂, û) = F+−++(ŝ, û, t̂) , F+++0(ŝ, t̂, û) ,

F++−0(ŝ, t̂, û)F+−+0(ŝ, t̂, û) = F+−−0(ŝ, û, t̂) .

3 Their sign is related to the sign of the S matrix through
Sλ1λ2λ3λ4 = 1 + i(2π)4δ(pf − pi)Fλ1λ2λ3λ4 . We use the Jacob–
Wick convention



G.J. Gounaris et al.: The γγ → γZ process at high energies and the search for virtual SUSY effects 509

There are three different forms of contributions to
these amplitudes arising from W , fermion, or scalar parti-
cle loops. To express them economically, we use the nota-
tion of [14] for the B0, C0 and D0 one-loop functions first
defined by Passarino and Veltman [10], and we introduce
the shorthand writing

B0(ŝ) ≡ B0(ŝ;m, m) , (A.4)
C0(ŝ) ≡ C0(12) = C0(0, 0, ŝ;m, m, m) , (A.5)

and

BZ(ŝ) ≡ B0(ŝ) − B0(m2
Z + iε) , (A.6)

CZ(ŝ) ≡ CZ(34) = C0(m2
Z , 0, ŝ;m, m, m)

= C0(0, m2
Z , ŝ;m, m, m) , (A.7)

DZ(ŝ, û) ≡ DZ(123) = D0(0, 0, 0, m2
Z , ŝ, û;m, m, m, m)

= DZ(û, ŝ) . (A.8)

The expressions

F̃ (ŝ, t̂, û) ≡ DZ(ŝ, t̂) + DZ(ŝ, û)

+DZ(û, t̂) , (A.9)

E(t̂, û) = E(û, t̂) ≡ t̂C0(t̂) + ûC0(û) + t̂1CZ(t̂)

+û1CZ(û) − t̂ûDZ(t̂, û), (A.10)

appear naturally in the amplitudes below, where ŝ1 =
ŝ − m2

Z , t̂1 = t̂ − m2
Z , û1 = û − m2

Z .
The W -loop contribution to the helicity amplitudes

may then be written as4 [7,6]

FW
λ1λ2λ3λ4

(ŝ, t̂, û) ≡ α2 cW

sW
AW

λ1λ2λ3λ4
(ŝ, t̂, û) (A.11)

where

AW
++++(ŝ, t̂, û)

=
16ŝ1

ŝ
E(t̂, û) + 4

[
2

(
ŝ − 4m2

W

)
ŝ1 − m2

W

(
m2

Z − 6m2
W

)]
×F̃

(
ŝ, t̂, û

)
+ 2

(
m2

Z

m2
W

− 6
) {

t̂û + m2
W (ŝ + ŝ1)
ŝŝ1

E(t̂, û)

−2m2
W

ŝ1

[
t̂ûDZ(t̂, û) + m2

ZC0(ŝ)
] − (ŝ + m2

Z)t̂û
ŝ1t̂1û1

−2m2
W m2

Z ŝ

ŝ1t̂1
CZ(t̂) +

(
2t̂ + ŝ

ŝ1
− m4

Z ŝ

ŝ1t̂21

)
BZ(t̂)

− 2m2
W m2

Z ŝ

ŝ1û1
CZ(û) +

(
2û + ŝ

ŝ1
− m4

Z ŝ

ŝ1û2
1

)
BZ(û)

}
,

(A.12)

AW
+++−(ŝ, t̂, û)

4 The easiest way to calculate this is to use a nonlinear gauge,
as in [9], in which the couplings γW ±φ∓, ZW ±φ∓ vanish. In
such a gauge, the same propagator appears along the entire
loop

= 2
(

m2
Z

m2
W

− 6
) {

− 2m4
W F̃ (ŝ, t̂, û) − m2

Z t̂û

ŝ2ŝ1
E(t̂, û)

+m2
W

[
(4m2

Z − ŝ)t̂û
ŝŝ1

DZ(t̂, û) − ŝ(û2 + t̂2)
ŝ1t̂û

C0(ŝ)

− ŝ2
1

ût̂
CZ(ŝ)

]
+

(ŝ + m2
Z)t̂û

ŝ1t̂1û1
+ m2

W

[(
(m2

Z û − ŝt̂)ŝ
ŝ1t̂1û

+
2m2

Z û − ŝû1

ŝ1ŝ

)
CZ(t̂) − (2m2

Z û + ŝt̂)t̂
ŝûŝ1

C0(t̂)

− ŝt̂

û
DZ(ŝ, t̂)

]
+ m2

W

[(
(m2

Z t̂ − ŝû)ŝ
ŝ1û1t̂

+
2m2

Z t̂ − ŝt̂1
ŝ1ŝ

)

×CZ(û) − (2m2
Z t̂ + ŝû)û
ŝt̂ŝ1

C0(û) − ŝû

t̂
DZ(ŝ, û)

]

+
m2

Z(2t̂1 − ŝ)ût̂

ŝŝ1t̂21
BZ(t̂) +

m2
Z(2û1 − ŝ)ût̂

ŝŝ1û2
1

BZ(û)

}
,

(A.13)

AW
++−+(ŝ, t̂, û)

= 2
(

m2
Z

m2
W

− 6
) {

− 2m4
W F̃ (ŝ, t̂, û) + 1

−m2
W

[
t̂û

ŝ1
DZ(t̂, û) +

ŝ(û2 + t̂2)
ŝ1t̂û

C0(ŝ) +
ŝ2
1

ût̂
CZ(ŝ)

+
t̂ŝ

û
DZ(ŝ, t̂) +

û2 + ŝ2
1

ŝ1û
C0(t̂) +

t̂t̂1
ŝ1û

CZ(t̂) +
ŝû

t̂
DZ(ŝ, û)

+
t̂2 + ŝ2

1

ŝ1t̂
C0(û) +

ûû1

ŝ1t̂
CZ(û)

]}
, (A.14)

AW
++−−(ŝ, t̂, û)

= 2
(

m2
Z

m2
W

− 6
)

{1 − 2m4
W F̃ (ŝ, t̂, û)

−m2
W m2

Z

ŝŝ1
[E(û, t̂) + 2ŝC0(ŝ)]}, (A.15)

AW
+−+−(ŝ, t̂, û) = AW

+−−+(ŝ, û, t̂)

= 16
ŝ

ŝ1
E(ŝ, t̂) + 4

(
2ŝû(û − 4m2

W )
ŝ1

− m2
W (m2

Z − 6m2
W )

)
F̃ (ŝ, t̂, û) + 2

(
m2

Z

m2
W

− 6
)

×
{(

ŝt̂

û2 +
2m2

W

û

)
E(ŝ, t̂) − m2

W

[
2ŝt̂

û
DZ(ŝ, t̂)

+
m2

Z

ŝŝ1
E(û, t̂) +

2m2
Z(2t̂1 + ŝ)
ŝ1t̂1

CZ(t̂)
]

+
ŝ(ŝ1 − t̂)

ŝ1û
BZ(ŝ)

− ŝt̂(2ŝ1t̂1 + t̂û)
ŝ1ût̂21

BZ(t̂) − ŝt̂

ŝ1t̂1

}
, (A.16)

AW
+−−−(ŝ, t̂, û) = AW

+−++(ŝ, û, t̂)
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=
8m2

Z û

ŝ1t̂

[
2E(ŝ, û) − t̂(4m2

W − t̂)F̃ (ŝ, t̂, û)
]

−2
(

m2
Z

m2
W

− 6
) {

m2
W

[(
ŝû

t̂
+ 2m2

W

)
DZ(ŝ, û)

+
(

ŝt̂

û
+ 2m2

W

)
DZ(ŝ, t̂) +

(
t̂û

ŝ1
+ 2m2

W

)
DZ(t̂, û)

+
ŝŝ1

ût̂
C0(ŝ) +

û2

ŝ1t̂
C0(û) +

û2 + ŝ2
1

ŝ1û
C0(t̂) +

û2 + t̂2

ût̂
CZ(ŝ)

+
2m2

Z t̂2 + û1(t̂t̂1 + ŝŝ1)
ŝ1û1t̂

CZ(û) +
t̂t̂1
ŝ1û

CZ(t̂)
]

+
m2

Z t̂û

ŝ1û2
1

BZ(û) − ŝû

ŝ1û1

}
, (A.17)

AW
+++0(ŝ, t̂, û)

= pt

√
2 mZ

(
m2

Z

m2
W

− 6
) {

(t̂ − û)
[
3m2

W

ŝ1
DZ(t̂, û)

−E(t̂, û)
ŝŝ1

+
2m2

W ŝ

ŝ1t̂û
C0(ŝ) +

2ŝ

ŝ1t̂1û1

]
+ m2

W

[
ŝ

û
DZ(ŝ, t̂)

+
2
ŝ1

C0(t̂) +
2(2ŝ2 − t̂21)

ŝ1t̂1û
CZ(t̂)

]
+

2(2t̂1t̂ + m2
Z û)

ŝ1t̂21
BZ(t̂)

−m2
W

[
ŝ

t̂
DZ(ŝ, û) +

2
ŝ1

C0(û) +
2(2ŝ2 − û2

1)
ŝ1û1t̂

CZ(û)
]

−2(2û1û + m2
Z t̂)

ŝ1û2
1

BZ(û)

}
, (A.18)

AW
++−0(ŝ, t̂, û)

= pt

√
2 mZ(m2

Z − 6m2
W )

{
(t̂ − û)

ŝ1

(
DZ(t̂, û) − 2ŝ

ût̂
C0(ŝ)

)

− ŝ

û
DZ(ŝ, t̂) +

2
ŝ1

C0(t̂) − 2t̂1
ŝ1û

CZ(t̂) +
ŝ

t̂
DZ(ŝ, û)

− 2
ŝ1

C0(û) +
2û1

ŝ1t̂
CZ(û)

}
, (A.19)

AW
+−+0(ŝ, t̂, û) = AW

+−−0(ŝ, û, t̂)

= pt

√
2

{
8mZ ŝ

ŝ1

[
(û − 4m2

W )F̃ (ŝ, t̂, û) +
2E(ŝ, t̂)

û

]

+mZ

(
m2

Z

m2
W

− 6
) {

m2
W

[
(t̂ − û)

ŝ1
DZ(t̂, û) +

ŝ

t̂
DZ(ŝ, û)

+
3ŝ

û
DZ(ŝ, t̂)

]
+

2m2
W

ŝ1

[
C0(t̂) + C0(û) − ŝŝ1

ût̂
C0(ŝ)

+
û1

t̂
CZ(û) +

t̂1
û

CZ(t̂) − 2û

t̂1
CZ(t̂)

]
− ŝ

u2 E(ŝ, t̂)

+
2ŝ

ŝ1û
BZ(ŝ) − 2

(
1
û

+
m2

Z û

ŝ1t̂21

)
BZ(t̂) +

2ŝ

ŝ1t̂1

}}
, (A.20)

where

pt =

√
t̂û

ŝ
. (A.21)

When comparing these results with those of [7], where he-
licity amplitudes are also given, we identify some discrep-
ancies in (A.13, A.14, A.18, A.19, A.20) that are of minor
importance, since the affected amplitudes are very small.
In addition, there is a difference in sign for the longitudi-
nal Z amplitudes, since [7] does not use the Jakob–Wick
convention5.

We next turn to the fermion-loop contribution. Writ-
ing the effective Zff̄ interaction as

LZff = −eZµf̄(γµgZ
V f − γµγ5g

Z
Af )f, (A.22)

we remark that, due to charge conjugation, only the vec-
tor coupling gZ

V f gives a nonvanishing contribution. For
ordinary quarks and leptons, this is

gZ
V f =

tf3 − 2Qfs2
W

2sW cW
, (A.23)

where tf3 is the fermion third isospin component, and Qf

its charge. Denoting then the fermion mass as mf , its
contribution to the helicity amplitudes is written as [8]

F f
λ1λ2λ3λ4

(ŝ, t̂, û) ≡ α2Q3
fgZ

V fAf
λ1λ2λ3λ4

(ŝ, t̂, û) . (A.24)

For the presentation of the fermion-loop contribution, it
is convenient to introduce the definitions

xf ≡ 4m2
f

m2
Z − 6m2

f

(A.25)

and6

Gf (ŝ, t̂, û) =
(10m2

f + m2
Z)

m2
f

E(t̂, û) + 2ŝ

× [
4ŝ − 10m2

f − m2
Z

]
F̃ (ŝ, t̂, û) , (A.26)

which allow us to write [8]

Af
++++(ŝ, t̂, û) = xfAW

++++(ŝ, t̂, û; mW → mf )

−xf ŝ1

ŝ
Gf (ŝ, t̂, û) , (A.27)

Af
+++−(ŝ, t̂, û) = xfAW

+++−(ŝ, t̂, û; mW → mf ) , (A.28)

Af
++−+(ŝ, t̂, û) = xfAW

++−+(ŝ, t̂, û; mW → mf ) , (A.29)

Af
++−−(ŝ, t̂, û) = xfAW

++−−(ŝ, t̂, û; mW → mf ) , (A.30)

Af
+−+−(ŝ, t̂, û) = Af

+−−+(ŝ, û, t̂)

= xfAW
+−+−(ŝ, t̂, û;mW → mf )

5 Note also that the definitions of t̂ and û used here and in
[1,2] should be interchanged when they are compared with [7]

6 The functions E(t̂, û) and F̃ (ŝ, t̂, û) are defined in (A.10)
and (A.9), respectively, with m = mf
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−xf ŝ

ŝ1
Gf (û, t̂, ŝ) , (A.31)

Af
+−−−(ŝ, t̂, û) = Af

+−++(ŝ, û, t̂)

= xfAW
+−−−(ŝ, t̂, û; mW → mf )

−xf ûm2
Z

ŝ1t̂
Gf (t̂, ŝ, û), (A.32)

Af
+++0(ŝ, t̂, û) = xfAW

+++0(ŝ, t̂, û; mW → mf ) , (A.33)

Af
++−0(ŝ, t̂, û) = xfAW

++−0(ŝ, t̂, û; mW → mf ) , (A.34)

Af
+−+0(ŝ, t̂, û) = Af

+−−0(ŝ, û, t̂)

= xfAW
+−+0(ŝ, t̂, û; mW → mf )

−xfmZ

ŝ1

√
2t̂ŝ

û
Gf (û, t̂, ŝ) . (A.35)

Finally, the contribution to the helicity amplitudes
arising from a loop because of an scalar particle7 of charge
QS , mass mS , and third isospin component tS3 , is

FS
λ1λ2λ3λ4

(ŝ, t̂, û) ≡ α2Q3
SgZ

S AS
λ1λ2λ3λ4

(ŝ, t̂, û) , (A.36)

where

gZ
S =

tS3 − QSs2
W

sW cW
. (A.37)

Using then the definitions

xS =
2m2

S

6m2
S − m2

Z

, (A.38)

GS(ŝ, t̂, û) = 2E(t̂, û) + ŝ(ŝ − 4m2
S)F̃ (ŝ, t̂, û) , (A.39)

we obtain

AS
++++(ŝ, t̂, û) = xSAW

++++(ŝ, t̂, û; mW → mS)

−8xS ŝ1

ŝ
GS(ŝ, t̂, û) , (A.40)

AS
+++−(ŝ, t̂, û) = xSAW

+++−(ŝ, t̂, û; mW → mS) ,(A.41)

AS
++−+(ŝ, t̂, û) = xSAW

++−+(ŝ, t̂, û; mW → mS) ,(A.42)

AS
++−−(ŝ, t̂, û) = xSAW

++−−(ŝ, t̂, û; mW → mS) ,(A.43)

AS
+−+−(ŝ, t̂, û) = AS

+−−+(ŝ, û, t̂)

= xSAW
+−+−(ŝ, t̂, û;mW → mS)

−8xS ŝ

ŝ1
GS(û, t̂, ŝ) , (A.44)

AS
+−−−(ŝ, t̂, û) = AS

+−++(ŝ, û, t̂)

= xSAW
+−−−(ŝ, t̂, û; mW → mS)

−8xS ûm2
Z

ŝ1t̂
GS(t̂, ŝ, û), (A.45)

7 For example, an slepton

AS
+++0(ŝ, t̂, û) = xSAW

+++0(ŝ, t̂, û; mW → mS) , (A.46)

AS
++−0(ŝ, t̂, û) = xSAW

++−0(ŝ, t̂, û; mW → mS) , (A.47)

AS
+−+0(ŝ, t̂, û) = AS

+−−0(ŝ, û, t̂)

= xSAW
+−+0(ŝ, t̂, û; mW → mS)

−8xSmZ

ŝ1

√
2t̂ŝ

û
GS(û, t̂, ŝ) . (A.48)

Appendix B:
the asymptotic γγ → γZ amplitudes in SM

At high energies, the one-loop functions simplify consid-
erably. Such asymptotic expressions are very useful in elu-
cidating the physical properties of the amplitudes at high
energies, as can be seen from [1] for the γγ → γγ case.
In this appendix, we therefore present the asymptotic ex-
pression for one-loop functions relevant for the γγ → γZ
amplitudes.

Using thus the well-known asymptotic expression for
the B0 function of (A.4),

B0(ŝ) ' ∆ + 2 − ln
(−ŝ − iε

µ2

)
, (B.1)

where ∆ is the usual infinite term entering the calcula-
tion of the divergent integral [14], we obtain for the BZ(ŝ)
function defined in (A.6):

BZ(ŝ) ' − ln
( −ŝ − iε

−m2
Z − iε

)
, for |ŝ| � (m2, m2

Z) .

(B.2)
For the C0(ŝ) function defined in (A.5), a useful form is
[15]:

C0(ŝ) ' 1
2ŝ

[
ln

(−ŝ − iε
m2

)]2

. (B.3)

We next turn to CZ(ŝ) and DZ(ŝ, û) of (A.7, A.8),
which also depend on m/mZ . Simple asymptotic expres-
sions are derived for them for arbitrary m/mZ , using the
results of [15]. To present them, we first introduce the
quantity

aZ ≡
√

1 − 4m2

m2
Z

+ iε. (B.4)

Then, for |ŝ| � (m2, m2
Z),

CZ(ŝ) ' 1
ŝ

{
1
2

ln2
(−ŝ − iε

m2

)
+

π2

2
− 1

2

[
ln

(
1 + aZ

2

)

− ln
(

1 − aZ

2

)]2

+ iπ
[
ln

(
1 + aZ

2

)

− ln
(

1 − aZ

2

)]
+ O

(
1
ŝ

) }
, (B.5)
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while for (|ŝ|, |û|) � (m2, m2
Z),

DZ(ŝ, û) ' 2
ŝû

{
ln

(−ŝ − iε
m2

)
ln

(−û − iε
m2

)

−1
2

[
ln

(
1 + aZ

2

)
− ln

(
1 − aZ

2

)]2

+iπ
[
ln

(
1 + aZ

2

)
− ln

(
1 − aZ

2

)]

+O

(
1
ŝ

,
1
û

) }
. (B.6)

In all cases, the principal value of the logarithm, which
has its cut along the negative real axis, is understood.

We next turn to the functions F̃ (ŝ, t̂, û) and E(t̂, û) de-
fined in (A.9, A.10), which, together with BZ(ŝ) (compare
(B.2)), determine the high-energy behavior of the various
γγ → γZ amplitudes. Using (B.5, B.6), they can be ex-
pressed for (|ŝ|, |t̂|, |û|) � (m2, m2

Z) as

F̃ (ŝ, t̂, û) ' 2
ŝû

ln
(−ŝ − iε

m2

)
ln

(−û − iε
m2

)

+
2
ŝt̂

ln
(−ŝ − iε

m2

)
ln

(−t̂ − iε
m2

)

+
2
t̂û

ln
(−t̂ − iε

m2

)
ln

(−û − iε
m2

)
, (B.7)

E(t̂, û) ' π2 +
[
ln

(−t̂ − iε
m2

)
− ln

(−û − iε
m2

)]2

. (B.8)

It is worth remarking that no aZ term appears in (B.2),
(B.7), or (B.8). This implies that the asymptotic γγ → γZ
amplitudes do not depend on the ratio mZ/m; this is as
opposed to the situation for the asymptotic CZ and DZ

functions.
The corresponding asymptotic expressions of the W -

loop contributions, obtained from (A.12–A.20) for (|ŝ|, |t̂|,
|û|) � (m2

W , m2
Z) by neglecting terms of O(m2

W /ŝ) but
keeping terms of O(mW /

√
s), are

AW
++++(ŝ, t̂, û)

' 16E(t̂, û) + 8ŝ2F̃ (ŝ, t̂, û) + 2
(

1
c2
W

− 6
)

×
[
t̂û

ŝ2 E(t̂, û) − 1 +
(t̂ − û)

ŝ
[BZ(t̂) − BZ(û)]

]
, (B.9)

AW
+−+−(ŝ, t̂, û) = AW

+−−+(ŝ, û, t̂)

' 16E(ŝ, t̂) + 8û2F̃ (ŝ, t̂, û) + 2
(

1
c2
W

− 6
)

×
[

t̂ŝ

û2 E(ŝ, t̂) − 1 +
(ŝ − t̂)

û
[BZ(ŝ) − BZ(t̂)]

]
, (B.10)

AW
+++0(ŝ, t̂, û)

= pt

√
2 mZ

(
1

c2
W

− 6
) [

(t̂ − û)
(

− E(t̂, û)
ŝ2 +

2
t̂û

)

+
4
ŝ
[BZ(t̂) − BZ(û)]

]
, (B.11)

AW
+−+0(ŝ, t̂, û) = AW

+−−0(ŝ, û, t̂)

= pt

√
2 mZ

{
8ûF̃ (ŝ, t̂, û) +

16
û

E(ŝ, t̂) +
(

1
c2
W

− 6
)

×
[
− ŝ

û2 E(ŝ, t̂) +
2
û

[BZ(ŝ) − BZ(t̂)] +
2
t̂

]}
, (B.12)

AW
+++−(ŝ, t̂, û) ' AW

++−+(ŝ, t̂, û)

' AW
++−−(ŝ, t̂, û) ' AW

+−−−(ŝ, t̂, û)

' AW
+−++(ŝ, t̂, û) ' 2

(
1

c2
W

− 6
)

, (B.13)

AW
++−0 ' 0 . (B.14)

It is easy to see that at energies above 250 GeV, the
Sudakov-like log-squared terms in (B.8, B.7) largely cancel
out when substituted in these asymptotic amplitudes. Es-
sentially, only the single-logarithm large imaginary terms
remain, contributing to the dominant amplitudes AW

++++
(ŝ, t̂, û) and AW

+−+−(ŝ, t̂, û) = AW
+−−+(ŝ, û, t̂). Almost neg-

ligible are the the amplitudes in (B.11, B.12), while the
rest are even smaller.

Similar asymptotic expressions can also be obtained
for the fermion-loop contributions appearing in (A.27–
A.35), if one takes (|ŝ|, |t̂|, |û|) � (m2

f , m2
Z) and uses

(B.7, B.8). It turns out that at energies above 250 GeV,
the fermion-loop contribution in the SM to the large imag-
inary parts of the amplitudes F++++(ŝ, t̂, û) and F+−+−
(ŝ, t̂, û) = F+−−+(ŝ, û, t̂) is completely negligible. The W -
and fermion-loop contributions are comparable only to the
other very small amplitudes.

From Fig. 2 and Fig. 3, it can also be concluded that
the real and imaginary contributions of a fermion or scalar
loop are on an equal footing. As has been said already,
the large imaginary contributions to F++++(ŝ, t̂, û) and
F+−+−(ŝ, t̂, û) = F+−−+(ŝ, û, t̂) come from the dominant
W loop only.
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J. Steegborn, Z. f. Phys. C57 (1993) 615

5. R. Brinkman, et al. [hep-ex/9707017]; V. Telnov [hep-
ex/9802003, hep-ex/9805002]

6. E.W.N. Glover and A.G. Morgan, Z. f. Phys. C60 (1993)
175; M. Bailargeon and F. Boudjema, Phys. Lett. B272
(1991) 158; F.-X. Dong, X.-D. Jiang, and X.-J. Zhou,
Phys. Rev. D46 (1992) 5074; M.-z. Yang and X.j. Zhou,
Phys. Rev. D52 (1995) 5018.

7. G. Jikia and A. Tkabladze, Phys. Lett. B332 (1994) 441;
G. Jikia and A. Tkabladze, Phys. Lett. B323 (1994) 453.

8. E.W.N. Glover and J.J. van der Bij, Nucl. Phys. B313
(1989) 237; M.L. Lausen, K.O. Mikaelian, and M.A.
Samuel, Phys. Rev. D23 (1981) 2795

9. D.A. Dicus and C. Kao, Phys. Rev. D49 (1994) 1265
10. G. Passarino and M. Veltman, Nucl. Phys. B160 (1979)

151
11. S.Y. Choi, A. Djouadi, H. Dreiner, J. Kalinowski, and

P.M. Zerwas [hep-ph/9806279], Eur. Phys. J. C7 (1999)
123

12. G.J. van Oldenborgh and J.A.M. Vermaseren, Z. f. Phys.
C46 (1990) 425; G.J. van Oldenborgh, “FF: A package
to evaluate one loop Feynman diagrams”, Comput. Phys.
Commun. 66 (1991) 1

13. G.J. Gounaris and G. Tsirigoti, Phys. Rev. D56 (1997)
3030; ibid., D58 (1998) 059901(E)

14. K. Hagiwara, S. Matsumoto, D. Haidt, and C.S. Kim, Z.
f. Phys. C64 (1995) 559

15. M. Roth and A. Denner, Nucl. Phys. B479 (1996)
495 [hep-ph/9605420]; A. Denner and S. Dittmaier [hep-
ph/9812411]


